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СПИСАК СКРАЋЕНИЦА 

AI (енг. Artificial Inteligence) – вештачка интелигенција 

ANN (енг. Artificial Neural Network) – вештачка неуронска мрежа 

BW (енг. bandwith) – ширина пропусног опсега 

CNN (енг. Convolutional Neural Networks) – конволуционе неуронске мреже 

C2f (енг. Cross Stage Partial with feature fusion) – блок унакрсне фузије обележја 

CSPDarknet (енг. Cross Stage Partial Darknet) – мрежа са унакрсним фазама 

CPU (eng. Central Processing Unit) – централна процесорска јединица 

DIY (енг. Do It Yourself) – самостална израда 

DL (енг. Deep Learning) – дубоко учење 

DNN (енг. Deep Neural Networks) – дубоке неуронске мреже 

EDGE AI (енг. Edge Artificial Intelligence) – технологија у близини сензора 

ESD (енг. Energy Spectrum Detection) – енергетска детекција спектрограма 

FFT (енг. Fast Fourier Transformation) – брза Фуријеова трансформација 

FHSS (енг. Frequency-Hopping Spread Spectrum) – пренос у проширеном спектру применом 
фреквенцијског скакања 

FH (енг. Frequency Hopping) – фреквенцијско скакање 

FPV (енг. First Person View) – техника навођења дрона путем видео преноса 

FPS (енг. Frames Per Second) – број кадрова у секунди 

GNSS (енг. Global Navigation Satellite System) – глобални навигациони сателитски систем 

GPS (енг. Global Positioning System) – глобални позициони систем 

GPU (енг. Graphics Processing Unit) – графичка процесорска јединица 

IoT (енг. Internet of Things) – интернет ствари 

OFDM (енг. Orthogonal Frequency-Division Multiplexing) – фреквенцијско 
мултиплексирање применом ортогоналних носилаца 

ML (енг. Machine Learning) – машинско учење 

LIDAR (енг. Light Detection and Ranging) – мерење удаљености помоћу светлости 

PAN (енг. Path Aggregation Network) – мрежа за агрегацију путање 

SPPF (енг. Spatial Pyramid Pooling – Fast) – брзо просторно пирамидално усредњавање 

TOPS (енг. Tera Operations Per Second) – број тера операција у секунди 

YOLO (енг. You Only Look Once) – модел са једним проласком кроз мрежу  
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1. Увод 

У савременом ратовању беспилотне летелице, познатије као дронови, користе се у широком 

спектру операција које превазилазе њихове традиционалне улоге у извиђању, надзору и 

прикупљању обавештајних података. Савремени, технолошки напредни дронови све чешће 

се употребљавају као ваздушне платформе за електронско ратовање, прецизне ударе и 

неутралисање непријатељских система. Детекција дронова представља кључни почетни 

корак у функционисању антидрон система, при чему је неопходно обезбедити тачну и 

благовремену обраду података. Овај процес подразумева примену различитих технологија 

и алата који омогућавају добијање прецизних и употребљивих информација. У том 

контексту, вештачка интелигенција (енг. Artificial Inteligence, AI) се истакла као поуздано и 

ефикасно решење за детекцију и идентификацију дронова. Применом ових технологија 

антидрон системи могу значајно унапредити ситуациону свест и способност реаговања, 

чиме се постиже већи ниво безбедности и оперативне ефикасности. 

Предмет истраживања рада јесте приближавање вештачке интелигенције са задатком 

детекције и класификације дронова сензорима за прикупљање информација односно 

испитивање могућности и ограничења хардверских платформи које су представници 

технологије у близини сензора у извршавању неуронских мрежа (енг. Edge Artificial 

Inteligence, EDGE AI). Циљ рада јесте потврда решења у виду EDGE AI технологије за 

примену у реалним антидрон системима. Анализом извршавања модела неуронске мреже 

на изабраној платформи треба показати њене перформансе и испитати реалну могућност 

примене овакве технологије. Предност истраживања јесте отварање нових могућности у 

домену антидрон борбе и ослањању на предности које доноси примена EDGE AI 

технологије, а то је обрада података и доношење одлука које се реализују локално, чиме се 

значајно смањује кашњење у комуникацији и повећава ефикасност система. Поред тога, 

специфичне димензије поткрепљене одличним процесорским могућностима доводе до 

једноставне примене у системима који поседују извесна ограничења када су у питању 

хардверски ресурси (пример могу бити различите беспилотне летелице, извиђачки системи, 

војник у покрету и сл.). Недостатак овог истраживања је аквизициони систем који се 

користи за прикупљање и обраду радио-фреквенцијске (у даљем тексту РФ) комуникације 

између управљачких станица и дронова. Због специфичних РФ излаза није могуће повезати 
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хардверску платформу и аквизициони систем те није могуће реализовати испитивање у 

реалном времену. Стога се за истраживање користе подаци из базе података при чему се у 

поставкама тежи приближавању реалном сценарију. 

У првом рада делу дате су теоријске основе појмова и технологија које ће се користити у 

даљем раду. Објашњен је појам дронова, описан њихов начин рада, подела и 

комуникациони систем. Поред тога објашњен је и принцип рада антидрон система, дате су 

основе вештачке интелигенције са освртом на конволуционе неуронске мреже (енг. 

Convolutional Neural Networks, CNN) као и детаљна анализа примењеног YOLO (енг. You 

Only Look Once) алгоритма CNN. На крају је објашњена примена EDGE технологије. 

У другом делу описана је методологија израде рада која обухвата процес аквизиције 

сирових података и њихову даљу обрадом применом модела неуронске мреже на изабраној 

хардверској платформи. У овом делу објашњена је обрада сирових сигнала, поступак 

креирања слике спектрограма РФ комуникације. Након тога дата је анализа примене 

енергетске детекције спектрограма која за циљ има одбацивање спектрограма који не 

поседују сигнале од значаја за даљу анализу. Поред тога, дате су карактеристике изабране 

хардверске платформе и објашњена је припрема окружења за извршавање модела 

неуронске мреже. На крају поглавља детаљно су објашњени сценарији по којима је 

реализован практични део рада и параметри од значаја који ће у резултатима бити тумачени. 

Трећи део обухвата анализу примене развијеног модела у реалним условима, након 

имплементације на изабраној хардверској платформи. Испитана је изводљивост употребе 

YOLOv8 модела, као представника савремених конволуционих неуронских мрежа, у 

конкретним сценаријима препознавања и праћења дронова. Прорачунати су трошкови, као 

и ефикасност примене модела у реалном времену, узимајући у обзир ограничења изабраног 

хардвера. Дата је компаративна анализа неколико могућих решења, као и аргументован 

избор оптималне варијанте за интеграцију у реалне системе. 

На крају, дат је кратак закључак о доприносу рада, као и предлозима за унапређење овог 

истраживања и даљу примену добијених резултата.  
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2. Теоријска основа рада 

2.1 Дронови 

Дронови представљају летелице који не захтевају присуство људског пилота. Ове летелице 

могу бити управљане даљинским путем а могу летети самостално, уз помоћ аутономног 

система управљања, који омогућава да она лети по унапред дефинисаној путањи. Дронови 

се користе у широком спектру мисија које обухватају не само обавештајне, надзорне и 

извиђачке операције, већ и задатке попут електронског напада као и уништавања или 

потискивања непријатељских система противваздушне одбране. Њихова примена укључује 

и борбено трагање и спашавање [1]. 

Дронови представљају сложен систем који се састоји од више међусобно повезаних 

компонената. Основу система чини летелица приказана на Слици 1а), опремљена 

погонским моторима, батеријама, пропелерима, навигационим сензорима, као и 

различитим типовима камера и комуникационих уређаја. 

 

а) б) 

Слика 1. Пример комерцијалне беспилотне летелице – дрона [2, 3]. 

 

Други део система је управљачка станица приказана уз летелицу на Слици 1б) која може 

бити у облику ручног контролера, рачунарске конзоле или чак мобилног уређаја, преко које 

оператор прати положај и параметре лета у реалном времену. Између летелице и 

управљачке станице успоставља се комуникација која омогућава пренос команди, 
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телеметријских података и видео сигнала. Поред ових основних елемената, савремени 

дронови често садрже и аутопилот модуле који омогућавају аутономно управљање, као и 

системе за стабилизацију и избегавање препрека, што значајно повећава њихову безбедност 

и прецизност током извршавања задатака. 

2.1.1 Класификација дронова 

Класификација дронова врши се на основу више аспеката – поделе према маси, 

димензијама, висини лета, начину управљања и њиховој намени, а свака од наведених 

групација подједнако може бити опасна уколико се нађе у погрешним рукама. На основу 

начина управљања дронови се могу груписати на [4]: 

1. неуправљане, који се крећу унапред задатом путањом без могућности спољне контроле 

током лета, најчешће на основу унапред програмираних параметара, 

2. аутоматски управљане, који користе уграђене системе за навигацију и контролу лета 

који им омогућавају самостално извршавање задатака без директне интервенције 

оператера, уз могућност прилагођавања условима у окружењу и 

3. даљински управљане, који се контролишу у реалном времену од стране оператера 

позиционираног на произвољној локацији. 

Даљински управљани дронови су од интереса обзиром да је тема рада обрада резултата 

добијених аквизицијом РФ комуникационих сигнала између дрона и управљачке станице. 

Стога, у даљем тексту биће објашњен основни принцип комуникације дронова, односно 

комуникациони систем који поседује већина дронова доступних на тржишту, као и већи 

проценат самостално рађених (енг. Do It Yourself, DIY) летелица. 

2.1.2 Комуникациони систем дронова 

Комуникациони систем дронова приказан на Слици 2 односи се на РФ комуникацију између 

дрона и управљачке станице, као и податке које дрон добија са сателита. 
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Слика 2. Најпростији комуникациони систем дрона. 

У зависности од захтева примене, за реализацију бежичне комуникације могу се користити 

различити протоколи а избор конкретне технологије зависи од фактора као што су домет, 

брзина преноса података, потрошња енергије и услови рада у окружењу. Како је назначено 

на Слици 2, комуникациони систем дронова се састоји од канала за управљање дроном, 

телеметрије и канала за пренос видео сигнала који су успостављени између дрона и 

управљачке станице, као и навигационог канала који је успостављен са глобалним 

навигационим системима (GPS, GNSS, GLONAS и остали) [5]. 

Путем управљачког канала оператер маневрише летелицом и конфигурише основне 

параметре лета. Информације се углавном прослеђују у малим пакетима велике брзине 

преноса како би се остварила стабилна комуникација са малим кашњењима. Заступљене су 

различите технике приликом реализације овог линка, нарочито када су у питању DIY 

дронови. Међутим, када су у питању комерцијални дронови, управљачка комуникација се 

најчешће ослања на FHSS (енг. Frequency-Hopping Spread Spectrum) врсту преноса док се 

видео канал ослања на OFDM (енг. Orthogonal Frequency-Division Multiplexing) врсту 

преноса [5]. Спектрални садржај управљачке комуникације и видео линка приказан је на 

Слици 3. 
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а) б) 

Слика 3. Приказ спектрограма OFDM и FHSS сигнала: а) у 3D варијанти и б) обичан 

спектограм фреквенција/време. 

OFDM је врста преноса, односно врста технологије фреквенцијског мултиплексирања која 

користи принцип ортогоналних носилаца и на тај начин рационално користи спектар. У 

условима споро променљивог канала могуће је знатно повећати капацитет, а и отпорнија је 

на ускопојасну интерференцију. Ширина канала односно преносног сигнала може да варира 

у зависности од примењеног протокола [6]. 

FHSS је метода преноса радио сигнала која се заснива на веома брзом преносу носеће 

фреквенције сигнала. Свака емисија се назива хопом (скоком), а распоред хопова, односно 

избор носећих фреквенција заснива се на псеудослучајној секвенци која је доступна како 

предајнику, тако и пријемнику. Носеће фреквенције подељене су у канале који су 

униформно распоређени у доступном фреквенцијском опсегу или више подопсега. Већина 

комерцијалних дронова користи фреквенцијски опсег око 2.4 (2.4-2.5) GHz опсег или 5.8 

(5.725-5.875) GHz док број канала варира у зависности од врсте дрона. Технологија DIY 

дронова иде у корак с комерцијалним дроновима те и они имају напреднији комуникациони 

систем који неретко подразумева фреквенцијско скакање [5, 7]. 
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Канал за телеметрију обезбеђује повратну информацију оператеру о статусу летелице као 

што је ниво батерије, брзина, позиција и остало. 

Видео канал служи за пренос видео сигнала са камере дрона ка управљачкој станици који 

се налази код оператера. Дронови чија је основна функција прикупљање фотографија и 

видео снимака обично користе OFDM тип сигнала за видео линкове, због његових 

предности у погледу стабилности која је кључна за пренос квалитетног видео материјала. 

Са друге стране, дронови са појединим наменама често користе аналогне видео линкове, 

као што је случај са тркачким дроновима, где је веома важно минимизирати кашњење видео 

сигнала, као и са дроновима који се користе за самоубилачке мисије FPV (енг. First Person 

View). 

Навигациони линк је омогућен GNSS пријемником који је интегрисан у сам дрон. Овај 

пријемник обезбеђује податке о положају, брзини и времену који се затим преносе на 

крајњи терминал путем телеметријског линка. Ови подаци су кључни у ситуацијама када се 

користи функција повратка кући, која омогућава дрону да самостално врати на почетну 

локацију. Поред тога, дрон може да користи унапред дефинисане руте, чиме се оператер 

потпуно ослобађа од потребе за активним навођењем летелице. Дронови који су намењени 

за рекреативну употребу или они који нису способни да лете на великим удаљеностима, не 

морају бити опремљени оваквим пријемницима. У контексту овог рада, навигациони линк 

није од пресудне важности, јер се не може користити за процену карактеристика саме 

летелице. Међутим, у будућим радовима који се баве развојем механизама за борбу против 

дронова, овај линк може представљати значајну мету, јер носи податке који су витални за 

функционисање дрона [5]. 

2.2 Антидрон систем 

Антидрон борба је специфичан сегмент електронског ратовања те је ради пројектовања 

једног оваквог система потребно урадити анализу свих могућих чинилаца како би се дошло 

до ефикасног учинка. Антидрон систем је интегрисани скуп хардвера и софтвера који 

открива, идентификује, прати и по потреби неутралише нежељене дронове. Намењен је 

заштити инфраструктуре, догађаја и личности од потенцијалних претњи у виду 

неауторизованих дронова [8]. 
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2.2.1 Архитектура антидрон система 

Архитектура интегрисаних антидрон система обухвата три међусобно повезане 

компоненте: сензорски подсистем за прикупљање и пренос података, командно-

управљачки подсистем задужен за обраду информација и доношење одлука и подсистем за 

ометање који реализује мере неутрализације дронова на основу информација из претходних 

подсистема. Сензорски подсистем има улогу да прикупи податке из околине и те податке 

проследи даље на обраду у систему. Подаци који се прикупљају су подаци о звучним 

таласима, подаци о радио таласима и подаци о оптичким таласима па се стога сензори у 

антидрон системима могу препознати у виду акустичких, РФ сензора, радара, електро-

оптичких или инфрацрвених сензора, као и ласера за одређивање удаљености (енг. Laser 

Detection and Ranging, LIDAR). Командно-управљачки подсистем задужен је за 

обједињавање свих фактора и доношење одлука о даљој неутрализацији дронова. Главни 

задатак је пријем информација са сензорског подсистема, њихова обрада и доношење 

одлуке која може бити аутоматска (на основу претходно задатих параметара) или уз помоћ 

људског фактора. Систем за ометање дронова, како и назив дефинише намењен је за 

примену противмера којима се неутралише потенцијална претња. Избор начина и методе 

ометања доноси се на основу одлуке из командно-управљачког подсистема [9]. 

На Слици 4 приказан је проток информација у сложеним антидрон системима, односно 

пример могућих опција умрежавања више система. 
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Слика 4. Пример умрежавања антидрон система [9]. 

На Слици 4 а) се може видети један централизовани систем који се заснива на командно-

управљачком подсистему који је задужен за обједињавање информација са сензорских 

система, доношење одлуке и прослеђивање исте систему за ометање. У конкретном случају 

представљена је опција где се сензори и системи за ометање могу наћи на појединачним 

платформама као и удружени на заједничкој платформи. У случају под б) и в) представљене 

су опције у којима се све три компоненте могу наћи на једној заједничкој платформи и бити 

увезане са платформама истог ранга или произвољно распоређене у оквиру сложеног 

система. Оно што се такође може рећи јесте да су мобилни сложени системи углавном 

смештени на једној платформи и да у зависности од ранга могу, a и не морају бити повезани 

са другим антидрон системима. Закључак је да се у једном систему ретко налази само један 

сензорски систем или систем за ометање али избор сваке појединачне компоненте 

првенствено зависи од намене система и расположивих ресурса. 
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2.2.2 Подела антидрон система 

Како су антидрон системи комплексни, могла би се реализовати подела према свакој од 

појединачних компонената, међутим, како је примарни циљ неутрализација претње, главна 

подела ових система према начину и методи неутрализације претње била би на системе који 

физички уништавају дрон или његове компоненте и системе који онеспособљавају неку од 

функција дрона. Системи за физичко уништавање имају деструктивни приступ и 

подразумевају циљање дрона одређеним пројектилима, мрежема, ласерима и сличним 

решењима. Ефективни су у неутрализацији али нису довољно безбедни као систем [5]. 

Физичко уништавање може бити реализовано кроз [10]: 

1. физичко уништавање летелице које се огледа у примени пројектила, експлозива, 

различитих врста наоружања или утрениране животиње ради потпуног или делимичног 

уништавања неауторизованих дронова, 

2. изворе електромагнетног зрачења велике снаге који су намењени потпуном уништавању 

електронике летелице и 

3. изворе ласерског зрачења који могу потпуно или делимично уништити компоненте 

неауторизованих дронова. 

Системи за онеспособљавање функције дрона представљају врсту система за неутралисање 

беспилотних летелица који не користе физичку силу, већ делују на електронском нивоу. 

Њихово деловање се углавном заснива на ометању комуникационог система дрона чиме се 

онемогућава контрола летелице или јој се изазива пад, повратак или слетање. Уобичајене 

технике укључују РФ ометање, лажне GPS сигнале и прекид видео или управљачког 

сигнала ка оператеру. Ови системи се сматрају ненасилним и погодни су за примену у 

урбаним и осетљивим срединама где би на веома безбедан начин могли да реше питање 

неауторизованих дронова и потенцијалних претњи које оне носе са собом [5, 11]. 

Системи за онеспособљавање функције могу бити [10]: 

1. ометачи који нарушавају квалитет комуникационог система дрона тако што емитују РФ 

сигнале велике снаге у фреквенцијском опсегу рада комуникационог система дрона, 
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2. обмањивачи који примарно збуњују GNSS пријемник дронова слањем погрешних 

сигнала који за циљ имају да оператер добије погрешан статус о позицији дрона (поред 

тога, могу усмерити кретање дронова у жељеном правцу), 

3. системи за сајбер напад који убацују малициозни код у софтвер дронова, а све у циљу 

откривања слабих тачака и упућивања дронова на одређене акције без ауторизације 

оператера и 

4. системи за пресретање комуникације који служе за детаљнију анализу и процену у 

погледу локације дронова, оператера, параметара мисије и других информација од 

значаја. 

Избор појединачних компонената система зависи од специфичних захтева мисије и ресурса 

који су на располагању. У складу с тим, архитектура антидрон система подразумева 

сложену интеграцију сензора, командно-управљачких подсистема и система за ометање, са 

циљем да се што ефикасније реагује на појаву неауторизованих летелица. У будућности, 

напредак у технологијама као што су вештачка интелигенција и сензорски уређаји имаће 

значајан утицај на перформансе и ефикасност ових система, чинећи их још бржим и 

прецизнијим у одговору на све сложеније претње. Обзиром на брз развој технологија и све 

већу употребу беспилотних летелица у различитим областима, потреба за ефикасним 

антидрон системима ће бити све већа, те ће овакви системи играти кључну улогу у 

безбедности. 

2.3 Вештачка интелигенција и конволуционе неуронске мреже 

2.3.1 Појам вештачке интелигенције 

Вештачка интелигенција представља област рачунарских наука која се бави развојем 

система способних да извршавају задатке који захтевају интелигенцију која тежи људској. 

То подразумева активности као што су учење, резоновање, препознавање образаца, 

доношење одлука и разумевање природног језика [12]. 

Вештачка интелигенција подразумева способност система да интерпретира податке из 

окружења, учи из искуства и користи стечено знање ради постизања дефинисаних циљева. 

Овај појам обухвата више области, међу којима су најзначајнија машинско учење (енг. 
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Machine Learning, ML) и дубоко учење (енг. Deep Learning, DL), који представљају темељ 

савремених интелигентних система [13]. 

Машинско учење представља област вештачке интелигенције која се бави развојем система 

способних да самостално унапређују своје перформансе на основу искуства и анализе 

података. Уместо да се ослањају искључиво на унапред дефинисане алгоритме, овакви 

системи користе историјске податке како би препознали обрасце, извукли релевантне 

карактеристике и доносили предвиђања или одлуке засноване на подацима. У пракси, 

алгоритми машинског учења примењују се за откривање неправилности у финансијским 

трансакцијама, детекцију сајбер напада, дијагностику кварова у рачунарским системима 

или предвиђање отказа опреме на основу историје одржавања и учесталости замене делова. 

Овакви системи омогућавају ефикаснија и адаптивна решења у различитим областима 

примене [14]. 

Израз дубоко учење односи се на обуку неуронских мрежа различитог обима. Неуронска 

мрежа је низ алгоритама који настоје да препознају основне односе у скупу података кроз 

процес који опонаша начин на који људски мозак функционише. У том смислу, неуронске 

мреже се односе на системе неурона вештачке природе. Неуронске мреже се могу 

прилагодити променљивом улазу тако да мрежа генерише најбољи могући резултат без 

потребе за редизајнирањем излазних критеријума. Неурон у неуронској мрежи је 

математичка функција која прикупља и класификује информације према специфичној 

архитектури. Неуронска мрежа садржи слојеве међусобно повезаних чворова где је сваки 

чвор познат као перцептрон и сличан је вишеструкој линеарној регресији. Перцептрон 

доводи сигнал произведен вишеструком линеарном регресијом у функцију активације која 

може бити нелинеарна [15]. 

Дубоко учење представља еволутивни корак у развоју неуронских мрежа, омогућавајући им 

да путем више скривених слојева самостално извлаче карактеристике из сложених скупова 

података. Таква структура омогућава моделима да препознају све сложеније обрасце, што 

резултира већом тачношћу у задацима као што су класификација слика, препознавање 

говора и анализа сигнала. Један од најзначајнијих представника дубоких неуронских мрежа 

су конволуционе неуронске мреже (енг. Convolutional Neural Network, CNN) које се 

углавном користе за задатке препознавања објеката, укључујући класификацију слика, 
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детекцију и сегментацију. Конволуционе неуронске мреже примењују се у различитим 

практичним ситуацијама, као што су аутономна возила, системи безбедносних камера и 

слично [16, 17]. 

2.3.2 Неуронске мреже 

Вештачке неуронске мреже (енг. Artificial Neural Network, ANN) или једноставније 

неуронске мреже, су нови системи и рачунарске методе за машинско учење, које 

демонстрирају знања и на крају примењују стечена знања како би се максимизирали 

излазни одговори сложених система. Усредсређени су на неуронску структуру кортекса 

мозга сисара, али у много мањем обиму. Многи стручњаци за вештачку интелигенцију 

верују да су вештачке неуронске мреже најбоља и можда једина нада за дизајнирање 

интелигентне машине. Када се неуронске мреже прошире већим бројем скривених слојева 

и већим капацитетом за учење, оне прерастају у дубоке неуронске мреже (енг. Deep Neural 

Networks, DNN), што чини суштину савремених техника дубоког учења [15, 18]. 

2.3.3 Архитектура и различити типови неуронске мреже 

Неуронске мреже се користе за решавање различитих задатака као што су препознавање 

образаца, класификација, регресија, обрада природног језика, препознавање слика и слично. 

Кључни елемент ове идеје је стварање нових структура система за обраду информација [19]. 

Архитектура ANN је приказана на Слици 5. 

 

Слика 5. Архитектура вештачке неуронске мреже [21]. 
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Систем се састоји од великог броја међусобно повезаних елемената за обраду, који се 

називају неурони, а који заједнички раде на решавању проблема и преносу информација 

преко синапси. Неурони су тесно повезани и организовани у различите слојеве. Улазни слој 

прима податке, док излазни слој генерише коначни резултат. Између ових слојева могу се 

налазити један или више скривених слојева. Сваки скривени слој представља вектор 

неурона чији је задатак да трансформише улазне податке добијене из претходног слоја и да 

их пошаље неуронима следећег слоја. Дубину неуронске мреже одређује број слојева, а 

слојеви су означени индексима, почевши од нуле. Излазни слој може се састојати од једног 

излазног неурона или представљати вектор који садржи резултате класификације [22]. 

Свака веза има тежину, а сваки неурон има праг и функцију активације. Тежина везе 

одређује интензитет сигнала који пролази кроз ту везу. Функција активације прима излазни 

сигнал из претходне ћелије и претвара га у облик који може бити унесен у следећу ћелију, 

односно користи се за генерисање излаза на основу активационе вредности. Кључна 

особина функције активације је њена способност да дода нелинеарност у неуронску мрежу 

[23, 24]. Однос између тежине сваког елемента, улаза и излаза неуронске мреже приказан је 

на Слици 6. 

 

Слика 6: Тежина сваког елемента, улаза и излаза ANN система [21]. 

Ове мреже поседују способност учења, што подразумева да, ако дође до оштећења једне 

ћелије, преостале ћелије могу надокнадити њено одсуство и допринети процесу 

регенерације. Основна карактеристика интелигентног система је његова способност да учи. 

Систем који учи је флексибилнији и лакши за програмирање, што му омогућава брже и боље 

реаговање на нове проблеме и ситуације. Вештачке неуронске мреже, попут људи, уче из 

различитих примера, при чему се током процеса учења подешавају да обављају одређене 
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задатке. У овим системима, учење је адаптивно, што значи да се тежине синапси мењају 

тако да систем производи тачан одговор када се поднесу нови улази [25]. 

2.3.4 Конволуционе неуронске мреже 

На основу описане структуре и начина функционисања вештачких неуронских мрежа, 

развијене су различите специјализоване архитектуре које су прилагођене одређеним 

типовима података и задатака. Најзначајније међу њима су конволуционе неуронске мреже 

(енг. Convolutional Neural Networks, CNN), које представљају проширење концепта 

вишеслојних неуронских мрежа. Модели конволуционих неуронских мрежа су дизајнирани 

тако да на ефикасан начин обрађују податке који имају просторну или временску структуру, 

попут слика, видео-записа или сигнала. За разлику од класичних неуронских мрежа које 

третирају све улазне податке као независне вредности, CNN користе конволутивне 

операције које омогућавају издвајање локалних карактеристика из улазних података, попут 

ивица, облика или текстура. Ова особина чини их изузетно погодним за задатке детекције, 

класификације и сегментације слика, као и за примену у савременим системима вештачке 

интелигенције, укључујући антидрон технологије, препознавање објеката и аутономне 

системе управљања. Конволуционе неуралне мреже садрже тродимензионални распоред 

неурона уместо стандардног дводимензионалног низа. Први слој се назива конволуциони 

слој и сваки неурон у конволуционом слоју само обрађује информације из малог дела 

видног поља. Мрежа разуме слике у деловима и може да израчуна ове операције више пута 

да би завршила потпуну обраду слике. Промене у вредности пиксела ће помоћи да ивице 

буду откривене и класификоване у различите категорије. Пропагација је једносмерна где 

CNN садржи један или више конволуционих слојева праћених обједињавањем и двосмерна 

где излази конволуционог слоја иду у потпуно повезану неуронску мрежу за класификацију 

слика, a филтери се користе за издвајање одређених делова слике [26]. 

На основу принципа и структуре конволуционих неуронских мрежа развијене су бројне 

архитектуре специјализоване за различите примене у области рачунарског вида. Једна од 

најзначајнијих и најпознатијих међу њима је архитектура YOLO која представља један од 

најуспешнијих модела за детекцију објеката у реалном времену. 
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2.3.5 Реализација неуронске мреже помоћу YOLOv8 алгоритма 

Архитектура YOLOv8 (Слика 7) представља новије достигнуће у породици YOLO модела 

за детекцију објеката. Заснована на основним принципима и успеху претходних верзија, 

YOLOv8 уводи низ унапређења усмерених на повећање тачности и рачунарске 

ефикасности. Ове унапређене карактеристике чине га посебно погодним за примену у 

задацима детекције објеката у реалном времену, у различитим доменима рачунарског вида 

[27]. 

 

Слика 7. Архитектура YOLOv8 алгоритма [29]. 
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Једна од кључних предности YOLOv8 модела јесте његов модуларни и скалабилни дизајн, 

који омогућава лаку примену на различитим хардверским платформама. Архитектура је 

систематски организована у три основне компоненте: костур (енг. backbone), задужен за 

издвајање карактеристика; врат (енг. neck), који обједињује карактеристике различитих 

скала и глава (енг. head), који врши коначну предикцију класе и позиције објеката у слици. 

Оваква организација, приказана на Слици 7, не само да повећава флексибилност модела, 

већ доприноси и бољим перформансама у погледу брзине и прецизности [28]. 

Костур представља почетни и један од најважнијих делова YOLOv8 архитектуре. Његова 

основна функција је издвајање дубоких карактеристика из улазне слике, што подразумева 

идентификовање релевантних визуелних образаца, као што су ивице, текстуре, облици и 

структуре објеката. Ове карактеристике се затим користе у каснијим фазама модела за 

детекцију и класификацију објеката. 

У верзији YOLOv8, као основа за костур користи се модификована варијанта CSPDarknet 

архитектуре (енг. Cross Stage Partial Darknet), мреже са унакрсним фазама, која је првобитно 

представљена у YOLOv4 моделу. Уместо стандардних CSPLayer (енг. Cross Stage Partial 

Layer) блокова који су коришћени као грађевинска јединица у претходним верзијама, 

YOLOv8 уводи нову структуру под називом блок унакрсне конволуционе фузије односно 

C2f модул (енг. Cross Stage Partial with feature fusion). Овај модул омогућава спајање 

обележја из више међуслојева унутар једног блока, чиме се постиже бољи проток 

градијената кроз мрежу и смањује губитак информација током дубоког учења. 

Додатно, унутар костура се користи и брзи блок просторног пирамидалног извлачења (енг. 

Spatial Pyramid Pooling – Fast, SPPF), који омогућава захватање просторног контекста кроз 

више нивоа резолуције. SPPF слој користи серију операција максималног извлачења са 

различитим величинама језгра, што доприноси ефикаснијем препознавању објеката 

различитих величина, без значајног повећања броја параметара модела [30, 31]. 

Врат у архитектури YOLOv8 представља средњи део мреже који повезује костур са главом 

мреже задуженом за детекцију објеката. Његова основна функција је да обједини и преради 

карактеристике различитих просторних резолуција како би се побољшала тачност 
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предвиђања. У YOLOv8 архитектури, врат обично користи мрежу за агрегацију путања (енг. 

Path Aggregation Network, PAN) или сличне структуре ради ефикасније фузије података, 

што резултира бољим перформансама у реалном времену. Главне предности овог дела 

мреже су побољшана детекција малих објеката, бржа конвергенција током тренирања 

мреже и боља општа прецизност у различитим окружењима [32]. 

Глава у архитектури YOLOv8 је део мреже који прима обележја из врата и врши финално 

предвиђање: координате детектованих објеката, вероватноћу постојања објекта и класе 

објеката. YOLOv8 користи раздвојене процесе у архитектури главе, односно задаци 

предвиђања координата, класификације и одређивање вероватноће постојања објекта су 

раздвојени у различите гранe. Овај приступ доприноси бољем односу тачности и брзине 

извршавања модела а поред тога је погоднији за различите промене и адаптације [33]. 

За разлику од претходних YOLO верзија које су користиле референтни оквир (приступ са 

унапред дефинисаним облицима и скалама исечка), YOLOv8 прелази на архитектуру без 

унапред дефинисаних облика. Ова промена поједностављује процес тренинга, смањује број 

хиперпараметара, и омогућава моделу бољу флексибилност у детекцији објеката 

различитих димензија. У самој архитектури алгоритма (Слика 7), постоји пар блокова који 

су јако битни и који се понављају на свим нивоима. То су конволуциони блок, Bottleneck 

блок, C2f блок, SPPF блок и блок за детекцију. Архитектура сваког од њих је приказана на 

Слици 7. 

Избор YOLOv8 архитектуре за примену у препознавању сигнала који потичу од РФ 

комуникације дронова заснива се на њеној способности да у реалном времену детектује 

сложене просторне и временске обрасце у динамичним сценама. Иако је првобитно развијен 

за класичне задатке детекције објеката у сликама, YOLOv8 се показао изузетно 

флексибилним у анализи видеa, где се карактеристике комуникационог система дрона (као 

што су изобличења преноса, шум и варијације у структури кадра) могу посматрати као 

специфични визуелни обрасци. 
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2.4 Технологија у близини сензора 

Термин технологија у близини сензора односи се на примену и извршавање алгоритама 

вештачке интелигенције у непосредној близини корисника, а не у централизованим дата 

центрима или другим примењеним сервисима. Овај приступ омогућава да се обрада 

података и доношење одлука реализују локално, чиме се значајно смањује кашњење у 

комуникацији и повећава ефикасност система. 

Са најскоријим иновацијама у области ефикасности алгоритама вештачке интелигенције, 

брзом експанзијом интернета ствари (енг. Internet of Things, IoT) и развојем рачунарства у 

близини сензора, потенцијал ове технологије је евидентан. Овај концепт данас представља 

један од најзначајнијих праваца у дигиталној трансформацији и заснива се на локалној 

обради података, која омогућава анализу директно на уређају, чиме се обезбеђује мало 

кашњење и доношење одлука у реалном времену, уз очување приватности и безбедности 

јер подаци не напуштају локално окружење, као и на повећаној ефикасности система која 

се постиже смањењем потребе за преносом великих количина података ка серверима [34]. 

Ова способност је од посебног значаја за примене које захтевају одлучивање у реалном 

времену, као што је класификација дронова. У области електронског ратовања, нарочито у 

контексту антидрон система, предности технологије у близини сензора постају кључне. 

Поред тога, EDGE AI технологија побољшава отпорност система и омогућава већу 

оперативну аутономију смањењем зависности од стабилне мрежне повезаности, што је 

посебно важно у удаљеним или комуникационо угроженим срединама. Све ове 

карактеристике чине технологију у близини сервера погодном за реализацију 

интелигентних антидрон система. 

2.4.1 Архитектура и компоненте система у близини сензора 

Архитектура система технологије за обраду у близини сензора представља сложену 

комбинацију хардверских и софтверских компоненти које омогућавају извршавање 

алгоритама вештачке интелигенције у непосредној близини извора података. 

Структура једног система приказана је на Слици 8 и обухвата неколико међусобно 

повезаних слојева како је наведено у [35]. 
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Слика 8. Структура једног система технологије у близини сензора 

 

1. Слој уређаја, који представља извор података и почетну тачку обраде. Овај слој 

обухвата сензоре, уређаје, паметне камере, микроконтролере и специјализоване 

платформе. Овде се врши прикупљање података и почетна обрада (филтрирање, 

компресија, једноставна анализа). 

2. Слој обраде у близини сензора где се налазе локални рачунарски чворови који обављају 

комплекснију анализу података. Ови уређаји често садрже GPU или AI акцелератор, 

што им омогућава извршавање модела машинског и дубоког учења у реалном времену. 

Ови чворови могу управљати више уређаја и комуницирати са инфраструктуром дата 

центара. 

3. Слој дата центра који служи за централно управљање системом, обуку AI модела и 

складиштење велике количине података. Док се доношење одлука врши локално, дата 

центри се користе за периодично ажурирање модела, накнадне анализе и дистрибуцију 

нових параметара ка уређајима у близини сензора. 
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Хардвер представља основу архитектуре ових система, јер мора обезбедити довољну 

рачунарску снагу у ограниченом енергетском и просторном окружењу [36, 37]. Основне 

компоненте су: 

1. сензори и улазни уређаји који генеришу податке различитих типова (слика, звук, 

температура, покрет, локација, итд.), 

2. микроконтролери и микропроцесори који се користе се у системима мале снаге, 

3. AI акцелератори – специјализовани хардвер за брзо извршавање неуронских мрежа, 

4. AI платформе у близини сензора које представљају интегрисани систем који 

обједињује CPU, GPU и AI акцелератор у једном уређају. 

Софтверска инфраструктура ових система обухвата различите компоненте за развој, 

управљање и извршавање AI модела [36, 37]: 

1. радни оквири као што су TensorFlow Lite, PyTorch Mobile и ONNX Runtime, који 

омогућавају извршавање оптимизованих модела на уређајима са ограниченим 

ресурсима, 

2. системи за управљање моделима који омогућавају дистрибуцију, ажурирање и 

мониторинг модела у децентрализованом окружењу, 

3. алати за оптимизацију модела, као што су TensorRT, OpenVINO и TVM, који 

компримују и убрзавају моделе за рад у реалном времену. 

Све наведене компоненте и нивои обраде заједно чине интегрисани систем који омогућава 

да се сложене анализе и доношење одлука обављају у реалном времену, уз минималну 

зависност од централизованих ресурса. Таква архитектура не само да повећава брзину и 

поузданост рада, већ и значајно унапређује безбедност и приватност података, што је од 

посебног значаја у савременим апликацијама где је доступност комуникационе 

инфраструктуре ограничена или непредвидива. Управо због тога EDGE AI представља 

стратешки правац развоја интелигентних система, чији значај и примена континуирано 

расту у широком спектру индустријских, транспортних и безбедносних решења [38, 39]. 
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3. Методологија истраживања 

У практичној реализацији рада приказана је акцизиција РФ комуникације између дронова и 

управљачких станица, дизајнирање конволуционе неуронске мреже засноване на YOLO 

алгоритму ради анализе прикупљених података као и тестирање ефикасности хардверске 

имплементације. Примењена методологија истраживања је по сегментима представљена на 

Слици 9. 

 

Слика 9. Методологија израде рада. 

Први сегмент обухвата аквизицију сирових сигнала РФ комуникације дронова, њихову 

обраду и на излазу даје спектрограме који могу бити складиштени у бази или директно 

прослеђени у следећу фазу обраде. 
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Други сегмент приказан на Слици 9 представља база података која је креирана помоћу 

поставке из првог сегмента и која обухвата спектрограме креиране за тренирање 

конволуционе неуронске мреже односно њено тестирање. Циљ процеса јесте обрада 

података у реалном времену док се подаци из базе такође могу накнадно упутити у следећу 

фазу процеса обраде. База података је у овом раду битан сегмент из разлога имплементације 

и тестирања на хардверској платформи са којом у тренутној фази није могуће успоставити 

директну везу и радити обраду у реалном времену. 

Трећи сегмент обухвата примену математичке анализе постојеће емисије на излазним 

спектрограмима у циљу ефикасније селекције садржаја од значаја за даљу анализу. У овом 

сегменту одвија се одбацивање одређеног броја спектрограма који не носе информације од 

значаја и који се третирају као амбијент. 

Четврти део обухвата инференцију применом обученог модела на одабраном хардверу у 

четири сценарија. Модел неуронске мреже извршава се на изабраној хардверској 

платформи NVIDIA Jetson Orin која представља примену технологије на ивици и омогућава 

локалну обраду података у реалном времену уз минимално кашњење и енергетску 

ефикасност. 

Пети део обухвата прикупљање резултата и њихову анализу у циљу сагледавања тренутних 

перформанси и уочавања недостатака који би се отклонили додатним оптимизацијама 

хардвера или адаптацијом модела. 

3.1 Аквизиција и обрада сигнала 

3.1.1 Пријем 

Аквизициона поставка приказана на Слици 10 обухвата радио-пријемни систем и сет 

широкопојасних пријемних антена у опсегу од 400 MHz до 6 GHz са припадајућим 

кабловима и конекторима. Широкопојасна антена коришћена у овој аквизиционој поставци 

је антена AD-10E произвођача TRIVAL. 
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Слика 10. Аквизициона поставка примењена у изради рада. 

Радио-пријемни систем представља систем намењен за извиђање радио-фреквенцијског 

опсега ради пресретања и детекције комуникационих сигнала које користе комерцијални 

дронови, у различитим фреквенцијским опсезима. Радио-пријемни систем има могућност 

претраживања радио канала у опсегу фреквенција од 400 MHz до 6 GHz. Управљање и 

подешавање параметара радио-пријемног система је омогућено путем корисничке 

апликације израђене за потребу антидрон система. 

Главна компонента овог система је USRP NI-2954 радио-пријемник (у даљем тексту USRP) 

приказан на Слици 11. Овај софтверски дефинисани радио-уређај задужен је за пријем и 

обраду радио сигнала. Поред тога, овај уређај је задужен за комуникацију са софтверском 
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апликацијом. Поред USRP, рачунар са софтверском апликацијом чини другу компоненту 

овог система. 

Слика 11. Софтверски дефинисани радио коришћен за аквизицију РФ сигнала [40]. 

Аквизиција сигнала реализује се помоћу софтвера који се који се извршава на FPGA чипу 

USRP у ком је реализована целокупна логика за аквизицију и дигиталну обраду сигнала. 

FPGA код за аквизицију се састоји из више блокова од којих су за креирање спектрограма 

најбитнији блок за аквизицију сигнала и блок за брзу Фуријеову трансформацију (енг. Fast 

Fourier Transform, FFT) и спектрограм. 

Блок за аквизицију сигнала омогућава два мода рада радио-пријемног система: 

- фиксна фреквенција, при чему крајњи корисник задаје, односно дефинише 

централну учестаност, ширину опсега (BW) и број одбирака које је потребно 

аквизирати и  

- фреквенцијско претраживање, при чему се задаје опсег у коме ће се вршити 

фреквенцијско претраживање. 

Могуће вредности опсега приликом фреквенцијског претраживања су: 400 - 470 MHz, 800-

1000 MHz, 1164 - 1610 MHz, 2200 - 2500 MHz ,4900 - 5900 MHz или произвољан опсег од 

интереса на интервалу 400 MHz – 6 GHz. 
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Наведени фреквенцијски подопсези изабрани су из претходних искустава у раду на 

детекцији и борби против дронова. Осим тога, изабрани су тако да обухвате све опсеге од 

значаја који су званично додељени за употребу и рад са дроновима. 

3.1.2 Обрада сигнала 

Блок за FFT има за циљ одређивање фреквенцијског одзива сигнала са излаза блока за 

аквизицију. Корисник задаје број тачака (N_DFT) у којима ће фреквенцијска 

карактеристика бити одређена у вредностима: 2048, 4096 и 8192. Бирањем броја тачака за 

израчунавање FFTa, имплицитно се одређује фреквенцијска резолуција (F_RES) као F_RES 

= BW/N_DFT. 

За добијене фреквенцијске карактеристике потребно је омогућити трансфер ка 

корисничком интерфејсу. Пре формирања спектрограма, фреквенцијска карактеристика се 

пореди са прагом ради формирања бинарне слике (1 – бело ако је амплитуда већа од прага, 

0 – црна ако је мања од прага). Број узастопних фреквенцијских карактеристика потребних 

за формирање спектрограма одређен је параметром N_FRAME. Резолуција слике 

спектограма дата је у димензијама: N_FRAME x N_DFT. 

У оквиру обраде, над спектограмом је могуће извршити неке од морфолошких операција. 

Морфолошке операције које су подржане су операција ерозије, дилатације, отварања 

(ерозија па дилатација) и затварања (дилатација па ерозија). Корисник задаје структурне 

елементе потребне за морфолошке операције. Резултат морфолошких операција доставља 

се корисничком интерфејсу. Морфолошка обрада слике обухвата низ техника којима се 

врше измене облика на слици, како би се омогућила њихова лакша и прецизнија обрада у 

даљим фазама. Ови поступци укључују: глачање ивица објеката, поправку оштећених или 

прекинутих делова на слици, попуњавање разливених елемената, затварање рупа над 

објектима, као и уклањање ситних шумова на малим површинама слике и слично [41]. 

Након морфолошке обраде, резултат се доставља корисничком интерфејсу где се реализује 

даља обрада односно складишти се у бази података из које се могу накнадно позивати у 

процес обраде или користити за додатну анализу. 
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3.2 РФ база података  

За потребе истраживања и развоја антидрон система креирана је база података РФ 

комуникације дронова (VTI_RFDroneSET_USRP) која није јавно доступна. База која на 

Слици 9 представља други сегмент методологије израде рада је креирана помоћу опреме 

приказане у првом сегменту. Радио-пријемни систем подешен је тако да посматра  спектар 

у четири фреквенцијска опсега (400 MHz; 800 MHz; 2,4 GHz; 5,8 GHz), при чему константно 

аквизира сигнале у виду *.txt формата где се на сваком опсегу у једној секунди сниме четири 

фајла димензија 2048x1000, при чему је N_DFT = 2048, а број фрејмова = 1000. Треба 

напоменути да се након аквизиције сигнала врши морфолошка операција над добијеним 

спектрограмима, при чему су овако добијене слике бинаризоване, како је већ објашњено у 

првом сегменту. Ради бољег разумевања начина обраде сигнала и генерисања спектрогрма 

могу се дефинисати следећа времена: 

- време аквизиције за добијање једног спектрограма се рачуна према формули N_DFT*(broj 

frejmova)/BW, где је BW пропусни опсег пријемника који је фиксан и изности 200 MHz. У 

случају да је број фрејмова 1000, тада је време аквизиције 10,24 ms. 

- укупно време обраде аквизираних података и рачунања спектрограма представља суму 

времена аквизиције и времена које је неопходно радио-пријемном систему за прорачун FFT 

и морфолошке операције. Ово време је оквирно 24 пута веће од времена аквизиције, па је за 

случај где је број фрејмова 1000, време 250 ms. У пракси ово значи да приближно сваких 

300 ms пријемник генерише нови спектрограм у виду *.txt формата. У меморији пријемника 

сваки од фајлова у виду *.txt формата (матрице бита) касније бива конвертован у слику 

формата *.png. Примери креираних слика спектрограма приказани су на Слици 12. 
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Слика 12. Примери спектрограма који се налазе у бази VTI_RFDroneSET_USRP. 

Ова база података је креирана поступно, почевши од записа амбијенталних сметњи које су 

у великој мери заступљене у урбаним срединама и чији облик сигнала може представљати 

изазов у детекцији присуства дрона. Наредни корак у креирању базе јесте креирање записа 

о различитим врстама дронова, у различитим амбијенталним условима (са и без присуства 

шума). Такође, креирани су записи присуства различитих комбинација врста дронова. 

Током снимања увек је примењиван исти принцип за све дронове. Првенствено је сниман 

РФ сигнал дрона из непосредне близине, а затим снимано постепено удаљавање дрона од 

пријемника, како би се на улазу неуронске мреже обезбедили сигнали различитих снага који 

се очекују у реалној примени. 

Ради једноставније примене алгоритама и рада са смањеним бројем параметара, сви 

дронови из базе груписани су према комуникационом протоколу у три групе, како је 

наведено у Табели 1. 
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Табела 1. Подела дронова у бази и њихове карактеристике. 

Протокол Карактеристике и техничке одлике 
Модели 

дронова из базе

Lightbridge 
Старији DJI систем за пренос видеа и команди. Ради 
на 2.4 GHz, стабилан али са ограниченим дометом. 

Користи фиксни канал и мању брзину преноса.
DJI Phantom 4 

OcuSync 20 
(MHz) 

Прва генерација OcuSync протокола (често названа 
OcuSync 2.0). Ради на 2.4 GHz и 5.8 GHz, са ширином 

канала од 20 MHz.

DJI Mavic 2 
Matrice 300  
Mini 3 Pro

OcuSync 40 
(MHz) 

Напреднија верзија OcuSync протокола. Користи 
ширину канала од 40 MHz. Ради адаптивно на 2.4 и 5.8 

GHz опсезима са динамичким пребацивањем.

DJI Mavic 3t 
Matrice 30T 
Matrice 350

NOISE Амбијенталне сметње Нема дронова

3.3 Енергетска детекција 

Наредни корак у обради представља енергетска детекција спектрограма (eng. Energy 

Spectrum Detection, ESD) која је на Слици 9 назначена као трећи сегмент. Енергетска 

детекција може и не мора бити примењена, а примена зависи од изабраног модела за даљу 

анализу. У [42] објашњено је и дефинисано решење у виду примене енергетског детектора. 

Примењена метода функционише на једноставан начин. Улазни подаци се састоје од слике 

која се ствара трансформацијом детектованог сигнала, конкретно спектрограма са 

пријемника, у нумерички низ. Овај низ се затим нормализује у опсег [0, 1] како би се 

обезбедила униформност и упоредивост података. Након тога, генерише се бинарни низ на 

основу нормализованих вредности. Бинарни низ се сабира како би се израчунала енергија 

сигнала, што представља укупну количину пиксела у слици који су били оригинално на 

максималном интензитету. Овај збир се користи за одређивање енергетске вредности 

детектованог сигнала, која се потом може користити за даљу анализу или доношење одлука. 

Један од кључних изазова је правилно постављање прага за разликовање сигнала од 

интереса. Праг се одређује емпиријски кроз мерења за све узорке радио сигнала [42]. Уместо 

укупног броја спектрограма који би били доведени на улаз мреже, одбачен је значајан број 

спектрограма који су на шематском приказу након кола за одлучивање обележени као 

амбијент. 
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3.3.1 Одлука о прагу  

Како је већ наглашено, праг се бира емпиријским путем. У овом конкретном случају, у 

обзир је узет одређен број спектрограма који у себи не носе значајну информацију и 

одређени број спектрограма који се могу сматрати граничним у погледу енергије (јако лош 

ниво сигнала са дрона или делимично снимљена емисија у датом тренутку) након чега је у 

више наврата измерена њихова енергетска вредност према раније објашњеној методи. На 

Слици 13 приказана је граница енергетске детекције добијена након прорачуна за 

спектрограме из базе. 

 

Слика 13. Приказ резултата прорачуна енергетске детекције за спектограме из базе 

података. 

На основу добијених вредности донета је одлука о прихватљивом прагу детекције. У циљу 

упоређивања одрживости ове методе, у даљем раду реализована је инференција са и без 

употребе енергетске детекције. 
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3.4 Хардверска имплементација модела 

Наредни корак подразумева имплементацију конволуционе неуронске мреже на изабраној 

хардверској платформи. У овом процесу обрађују се спектрограми, који служе као улазни 

подаци за класификацију путем CNN архитектуре. Као изабрани модел примењен је 

YOLOv8, савремена и високо оптимизована верзија алгоритма за детекцију објеката, 

заснована на дубоким конволуционим мрежама. 

На платформи NVIDIA Jetson Orin извршена је имплементација модела неуронске мреже у 

циљу испитивања примене технологије у близини сензора у реалним системима. Оваквим 

приступом омогућава се ефикаснија употреба ресурса путем локалне обраде података, што 

доприноси смањењу кашњења, већој поузданости и лакшој примени на различитим 

хардверским платформама у реалном времену [43]. Полазећи од временски осетљиве 

природе антидрон операција, примарни циљ овог истраживања био је испитивање примене 

NVIDIA Jetson Orin платформе, специјализованог рачунарског уређаја са графичким 

процесором за рад на ивици, као и анализа њене ефикасности у поређењу са 

конвенционалним приступима [44]. 

Да би се извршила инференција на самој платформи, потребно је пре свега припремити 

окружење, извршити оптимизацију а затим реализовати инференцију ради тестирања 

перформанси. Стога ће у овом сегменту бити објашњене карактеристике изабране 

платформе, припрема окружења, алата и оптимизација за инференцију а затим и сценарији 

по којима је реализован практични део задатка. 

3.4.1 Jetson Orin NX 

Хардверска платформа Jetson Orin приказана на Слици 14 је моћан и компактан рачунарски 

модул за вештачку интелигенцију, развијен од стране компаније NVIDIA, намењен 

технологији у близини сензора и роботским апликацијама. Обезбеђује високе перформансе 

за извођење AI инференцирања што га чини погодним за примене у реалном времену као 

што су компјутерски вид, обрада природног језика и фузија сензорских података. 
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Слика 14. NVIDIA Jetson Orin платформа [45]. 

Омогућава паралелно извршавање више неуронских мрежа и подржава различите AI 

оквире: TensorRT (библиотека компаније NVIDIA намењена оптимизацији и убрзању 

извршавања модела машинског учења) и NVIDIA DeepStream (платформа за обраду видеа 

у реалном времену заснована на вештачкој интелигенцији), а подржава и платформе као 

што су PyTorch (отворена библиотека за машинско и дубоко учење), TensorFlow (оквир 

отвореног кода који се користи за креирање, обучавање и извршавање модела машинског 

учења и дубоких неуронских мрежа) и ONNX (отворени стандард за размену модела 

машинског учења који омогућава преносивост између различитих оквира као што су 

PyTorch, TensorFlow и остали) [46]. 

Ефикасност обраде слика на уређајима у близини сензора, као што је NVIDIA Jetson Orin, 

оцењује се на основу више параметара. Кључне метрике дате су у Табели 2 и укључују број 

обрађених кадрова у секунди FPS (eng. Frames Per Second), време кашњења у обради 

појединачног фрејма, теоријску процесну снагу у броју операција TOPS (енг. Tera 

Operations Per Second), као и меморијске капацитете. Додатно, енергетска ефикасност и 

подршка за оптимизоване AI библиотеке попут TensorRT и DeepStream играју значајну 

улогу у реализацији система за обраду слика у реалном времену [47]. 
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Табела 2. Основне карактеристике Jetson Orin платформе [48]. 

Компонента Jetson Orin NX (16 GB) 
AI перформансе до 100 TOPS (INT8, Ampere GPU)
GPU 1024 CUDA језгра + 32 Tensor Cores (архитектура Ampere)
CPU 8× Arm Cortex-A78AE, до 2.0 GHz
RAM 16 GB LPDDR5, 128-bit, до 102 GB/s
Видео Хардверски декодер/енкодер за H.265 (HEVC), H.264, AV1 и 

др.; до 8K30 decode, 4K60 encode
Камера интерфејс До 8 MIPI CSI-2 линија (D-PHY 2.1), укупно ≈ 20 Gb/s 
Интерфејси на 
развојном комплету 

USB 3.2 / 2.0, PCIe Gen4 (×4 и ×1) за NVMe, Gigabit Ethernet, 
DisplayPort 1.4a/eDP/HDMI 2.1, GPIO, I²C, SPI, UART итд.

Физичке димензије Модул: 69.6 × 45 mm (SO-DIMM 260 пинова); развојни део100 
× 79 × 21 mm

Потрошња енергије Конфигурисано 10–25 W
 

Да би се било који модел извршавао на датој платформи, потребно је извршити припрему и 

оптимизацију односно креирати окружење за извршавање. На Jetson Orin платформи, 

примарно је извршавање процеса на графичкој процесорској јединици (енг. Graphics 

Processing Unit, GPU), поред тога што могуће обраду реализовати и на процесору. 

Извршавање YOLO модела на GPU је знатно боље него на централној процесорској 

јединици (енг. Central Processing Unit, CPU), јер GPU има хиљаде језгара оптимизованих за 

паралелну обраду података. Пошто YOLO извршава велики број матричних операција 

током детекције објеката, GPU може те операције да обради истовремено и много брже, док 

CPU извршава задатке секвенцијално и са мање језгара. Резултат је вишеструко брже 

извршавање и мање кашњење, што је кључно за примене у реалном времену [49]. 

3.4.2 Карактеристике примењеног YOLO модела  

У оквиру овог рада примењен је модел дубоког учења трениран на скупу спектрограма чија 

је аквизиција, обрада и анализа карактеристика представљена у другом поглављу овог рада. 

На произвољним спектрограмима су у оквиру припреме за процес тренинга претходно 

означене регије од интереса. Анотација је извршена помоћу алата Label Studio, где су на 

сликама спектрограма који на себи имају детектовану РФ комуникацију једног типа дрона 

обележени облици те комуникације као релевантни објекти за даљу обраду. Након 

анотације, добијени подаци су искоришћени за креирање скупа за обучавање и валидацију. 

Подаци који су креирани јесу слике спектрограма са тачно обележеним објектима који 
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представљају класу из којих је креиран документ са лабелама односно координатама објекта 

и класом којој је додељен. Модел је трениран у софтверском окружењу Python, применом 

одговарајућих библиотека за дубоко учење (PyTorch) током 10 епоха. Резултат тренирања 

и валидације јесте оптимални модел за детекцију који се формира у формату model.pt.  

Принцип обучавања огледа се у уочавању карактеристика комуникационих сигнала 

забележених на спектрограмима, а који се разликују код различитих дронова. На Слици 15. 

приказан је спектрограм комуникације више дронова при чему су обележени сигнали од 

значаја који се применом овог модела издвајају и користе као основни параметар за 

диференцирање различитих врста дронова. 

Слика 15. Изглед спектрограма комуникације више дронова. 

Видео сигнали су примарни параметар за диференцирање различитих врста дронова 

обзиром да преовлађују на сликама. На основу временско-фреквенцијске анализе 

снимљених РФ узорака, може се јасно закључити да већина дронова користи технике 

проширеног спектра засноване на фреквенцијском скакању за управљачки сигнал. На 

основу временско-фреквенцијске анализе, могуће је проценити ширину опсега емисија, 

ширину једног скока, број канала у којима се реализује фреквенцијско скакање, време 

између два скока и време задржавања [50]. Међутим, због кратког трајања спектрограма и 



Мастер рад 

39 
 

немогућности да се на сваком уочи контролни сигнал у одређеном континуитету, 

идентификација се базира на видео сигналима. 

Дакле, на основу поделе дронова која је дата у бази објашњеној у претходном поглављу, 

очекивани излаз модела у виду класа приказан је у Табели 3. 

Табела 3. Класе дронова на излазу из модела. 

Класа Подела дронова из базе података 
0 Light Bridge
1 Ocu Sync 20
2 Ocu Sync 40

None Нема обележја познате класе 
 

Спектрограми на којима модел не препознаје обележје једне од дефинисаних класа 

класификује се као „None“. У пракси су то углавном спектрограми који припадају 

амбијенталном шуму, а који нису елиминисани у процесу енергетске детекције, евентуално 

типови дронова који се не налазе у бази података, а чија се обележја значајно разликују од 

приказаних. 

3.4.3 Jetson Orin оптимизација 

Да би се реализовала обрада на овој платформи, може се изабрати више приступа, 

библиотека и начина оптимизације у зависности од даље примене решења као што су 

примена Ultralytics библиотеке или TensorRT при чему сваки од примењених има предности 

и мане. 

TensorRT је софтверско решење компаније NVIDIA за високоперформансну инференцију 

дубоких неуронских мрежа, оптимизован за NVIDIA хардвер, укључујући Jetson Orin 

платформу. У овом приступу, модели се претходно конвертују у TensorRT формат (обично 

.engine фајлови), што укључује оптимизације попут квантизације, фузије слојева и 

парцијалне компилације графа. За разлику од примене Ultralytics библиотеке, директна 

употреба TensorRT-а подразумева приступ на основном нивоу, укључујући ручно 

учитавање модела, алокацију меморије и конфигурисање окружења у ком се модел 

извршава. Овај приступ омогућава максималну контролу и перформансе, али захтева дубље 

разумевање архитектуре модела и програмске логике [51, 52]. 



Мастер рад 

40 
 

Utralytics је отворено решење за објектну детекцију базирано на YOLO архитектури. У 

контексту примене на NVIDIA Jetson Orin платформи, Ultralytics се користи за инференцију 

у реалном времену на уређајима у близини сензора, где се постиже висок степен 

ефикасности захваљујући хардверској акцелерацији која подразумева да се интензивни 

математички прорачуни (који би иначе били извршавани на CPU-у) премештају на 

специјализоване компоненте хардвера које су дизајниране управо за тај тип операција [53]. 

На Jetson Orin-у, модели се обично претходно конвертују у оптимизовани формат као што 

је TensorRT ради убрзања инференције. Ultralytics библиотека омогућава лаку интеграцију 

са овим алатима, а истовремено пружа једноставан приступ за обраду слике/видео сигнала, 

што је погодно за примене у аутономним системима. 

У овом раду коришћен је модел за детекцију објеката у .pt формату (PyTorch модел), 

извршаван уз помоћ Ultralytics YOLO библиотеке. Модел је извршаван директно у PyTorch 

окружењу, без претходне конверзије у оптимизовани формат као што је ONNX или 

TensorRT. Разлог за рад са оригиналним форматом јесте то што Jetson Orin платформа 

омогућава хардверску акцелерацију путем CUDA и cuDNN библиотека, чиме се значајно 

убрзава инференција, иако није коришћена пуна оптимизација коју пружа TensorRT. Овакав 

приступ омогућава брз развој и лаку примену модела, уз релативно добре перформансе, 

посебно за прототипе и примарну анализу појединих процеса у оваквом окружењу. 

 3.4.3 Инференција 

Перформансе YOLO модела извршаваног преко Ultralytics библиотеке на Jetson Orin 

платформи анализиране су кроз класичан процес евалуације где су забележене следеће 

метрике: 

1. време учитавања модела, потребно да се модел иницијализује у меморији, 

2. просечно време потребно за обраду једне слике, 

3. брзина обраде кроз број кадрова који се може обрадити у реалном времену и 

4. укупно време обраде серије слика, мерено ради процене скалабилности у 

различитим сценаријима. 

Поред класичних метрика инференције, анализиране су и перформансе графичког 

процесора у погледу енергетске и хардверске ефикасности: 
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1. оптерећености GPU-а кроз проценат искоришћења графичке јединице током 

инференције, 

2. оптерећеност CPU-а ради праћења делегирања послова између CPU и GPU, 

3. потрошњa енергије кроз праћење тренутне и просечне потрошња GPU-а и 

4. температурa GPU језгра као индикатор термалног понашања система. 

Перформансе самог модела испраћене су у процесу валидације кроз следеће метрике: 

1. матрицу конфузије што омогућава бољу процену перформанси по класи, 

2. F1 криву ради приказа баланса између прецизности и одзивa модела,  

3. криву прецизности и одзивa за показивање поузданости прагова и 

4. криву прецизност-одзив ради приказа перформанси модела за сваку класу, што 

је омогућило детаљнију анализу способности модела. 

3.4.3.1 Поступак инференције  

Поступак инференције примењен у сваком сценарију обухвата следеће поступке: 

1. Учитавање модела: master_yolo.pt модел је иницијализован на Jetson Orin-у у PyTorch 

окружењу. 

2. Учитавање спектрограма: слике су учитаване секвенцијално из меморије Jetson Orin-а 

без предобраде у пакете. 

3. Инференција: за сваку слику, master_yolo.pt модел је враћао једну или више детекција у 

формату: 

a) координате оквира детектоване РФ емисије на спектрограму, 

б) вероватноћа, односно поузданост детекције за сваку РФ емисију, 

в) одлука која се доноси на основу највише вероватноћe - одлука о типу дрона 

присутном на спектрограму односно класи дрона. 

4. Складиштење резултата: за сваку слику чувани су време обраде, класа, вероватноћа и 

метаподаци за даљу анализу на основу којих је накнадно реализована анализа у циљу 

сагледавања перформанси модела. 
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3.4.4 Сценарио 

Тестирање YOLO модела за класификацију и идентификацију типова дронова обављено је 

у два сценарија на произвољном сету од 5000 спектрограма (2000 амбијент и 3000 

произвољни скуп слика спектрограма дронова из базе), при чему је свака слика 

представљала индивидуални временско-фреквенцијски приказ сигнала. Све метрике су 

прикупљене у Python окружењу користећи мерења преко доступних модула.  

3.4.4.1 Сценарио без примене енергетске детекције 

У првом тесту овог сценарија сви спектрограми су из меморије уређаја учитани у 

привремену меморију и одатле је једна по једна слика позивана динамиком коју одређују 

хардверске могућности. У другом тесту реализовано је приближавање реалном сценарију 

где су слике учитаване динамиком од 300 ms која одговара динамици пристизања 

спектрограма са радио-пријемника. Други тест је приказ поређења две методе, када је 

меморија растерећена и када су све слике учитане одједном. Трећи тест је најприближнија 

симулација тренутној реалној употреби где са сваког од 5 подопсега радио-пријемника 

пристижу спектрограми динамиком од 300 ms те је истовремено покренуто 5 процеса 

инференције који се одвијају над скуповима од 5000 слика спектрограма. 

3.4.4.2 Сценарио са енергетском детекцијом 

Први тест подразумевао је учитавање 5000 спектрограма у привремену меморију, пролазак 

кроз операцију енергетске детекције у којој је одбачен одређени број спектрограма а 

инференција је извршена над скупом преосталих слика спектрограма. Слике су као и у 

претходном тесту позиванe динамиком коју одређују хардверске могућности. У другом 

тесту реализовано је приближавање реалном сценарију где су слике учитаване динамиком 

од 300 ms која је реална динамици пристизања спектрограма са радио-пријемника, 

реализована је енергетска детекција и прослеђивање задржаних слика на инференцију. Као 

и у сценарију без енергетске детекције, трећи тест симулира најприближнију симулацију 

реалне употребе те је динамиком од 300 ms те је истовремено покренуто 5 процеса 

инференције који се одвијају над скуповима од 5000 слика спектрограма уз ангажовање 

енергетске детекције пре саме инференције. 
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4. Резултати 

4.1 Анализа перформанси модела 

Након процеса обучавања, у процесу евалуације коришћењем валидационог скупа 

резултати перформанси модела анализирани су применом следећих метрика: 

1. израђене су матрице конфузије у апсолутном и нормализованом облику, што је 

омогућило бољу процену перформанси по класи и  

2. израђене су F1 кривe ради приказа баланса између прецизности и одзивa модела, криве 

прецизности и одзивa за показивање поузданости прагова као и прецизност-одзив крива 

ради приказа перформанси модела за сваку класу, што је омогућило детаљнију анализу 

способности модела. 

На Слици 16 дата је матрица конфузије која је креирана након валидације модела. На 

Х-оси представљене су стварне вредности класа док су на Y-оси представљене 

предиковане вредности класа. 

3.   

Слика 16.  Нормализована матрица конфузије за изабрани модел. 
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У овом случају, како је дефинисано раније, постоје три класе које су додељене према 

протоколима комуникације. Поред тога, уколико модел не може слици спектрограма да 

додели обележја одређене класе, ту слику класификује као None. На основу приказане 

матрице може се закључити да модел постиже изузетно високу тачност у класификацији 

свих класа, при чему су све вредности на дијагонали једнаке 0.99. То значи да је вероватноћа 

да модел правилно идентификује објекте сваке класе 99%. Такође, може се уочити да модел 

прави грешку приликом разликовања класе 2 и класе 1, док су грешке између осталих класа 

знатно ређе, што указује на делимично преклапање карактеристика између ове две класе. 

F1 крива (Слика 17) приказује однос између поузданости модела и баланса прецизности и 

одзива. Максимална вредност F1 од 0.99 постигнута је при прагу поузданости од 0.402, што 

указује на добре перформансе модела. Све класе одржавају F1 вредности изнад 0.9 у 

великом интервалу прагова, што потврђује стабилност модела у различитим условима. 

 

Слика 17. F1криве по класама након валидације модела. 

Прецизност (Слика 18) представља однос између броја исправно откривених објеката 

и укупног броја свих откривених објеката. Крива поузданости показује да модел 

достиже максималну прецизност од 1.00 при прагу поузданости од 0.967. За све класе 
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прецизност је изнад 0.95 у широком интервалу прагова, што указује на способност 

модела да избегне лажне позитивне предикције чак и при нижим вредностима 

поузданости. 

 

 

Слика 18. Криве прецизности за све класе након валидације. 

Одзив (Слика 19) представља однос између броја исправно откривених објеката и укупног 

броја стварно постојећих објеката. Крива одзива показује да модел одржава максималну 

покривеност (одзив = 1.00) при најнижој вредности поузданости, што указује на способност 

да идентификује све објекте. Са повећањем прага, одзив благо опада, али остаје стабилан 

до вредности од око 0.8. Нагли пад након тога указује на то да већи прагови поузданости 

доводе до губитка исправних детекција. 
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Слика 19. Криве одзива за све класе након валидације. 

Крива прецизност-одзив (Слика 20) приказује однос између прецизности и одзива модела и 

служи за процену његове способности да тачно препозна позитивне примерке при 

различитим праговима одлучивања. На слици је приказана крива за све класе. Крива 

показује изузетно високе вредности прецизности и одзива кроз готово цео опсег прага 

одлучивања, што потврђује одличне перформансе модела. Вредности тачности модела при 

средњој тачности од 0.5 су приближно 0.995 за све класе и указују да модел успешно 

детектује релевантне узорке уз минималан број лажно позитивних и лажно негативних 

предикција. Облик криве у горњем десном углу графика сведочи о стабилности и 

поузданости модела чак и при промени прага одлучивања. 
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Слика 20. Криве прецизност-одзив за све класе након валидације. 

Током инференције забележени су метаподаци са информацијама о класи и вероватноћи 

предикције сваког детектованог објекта на основу чега је одрађена накнадна анализа како 

би добијени резултати били потврђени. При прагу поузданости 0.5, модел успешно 

класификује све класе са просечном вероватноћом 0.946. На Слици 21 приказан је изглед 

обележеног спектрограма након инференције. Сваки објекат који одговара обележјима 

класе означен је класом и вероватноћом предикције.  

        

Слика 21. Изглед визуелне детекције класе дрона након процеса инференције. 

Циљ ове анализе био је да се испита способност модела да поуздано идентификује објекте 

од интереса на спектрограмима, као и да се утврди у којој мери класе могу бити раздвојене 

на основу визуелних карактеристика. Закључак је да развијени YOLO модел са три класе 
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дронова показује изузетно добре перформансе у задацима детекције и класификације. 

Визуелни прикази резултата на валидационом скупу потврђују да модел успешно 

идентификује све дефинисане типове дронова, уз прецизно позициониране оквире. Таква 

стабилност у предикцијама указује на висок степен генерализације и поуздан рад модела и 

у условима који нису били директно обухваћени током обуке. Квантитативни резултати, 

добијени анализом горе приказаних метрика потврђују висок ниво тачности и 

уравнотеженост између прецизности и одзива модела. Вредности F1 мере изнад 0.9 за све 

класе, као и постигнута средња тачност од приближно 0.995, сведоче о способности модела 

да поуздано разликује различите типове дронова уз занемарљив број лажно позитивних и 

лажно негативних предикција. Ови резултати потврђују адекватност изабраног приступа и 

валидност процеса обучавања. Посебно је значајно што модел задржава високе вредности 

прецизности и одзива у широком интервалу прагова поузданости, што указује на његову 

робусност у реалним условима примене. Ова особина је кључна у контексту правовремене 

детекције дронова и њихове диференцијације по типу, јер антидрон систем мора реаговати 

са високом сигурношћу и минималним кашњењем. 

4.2 Анализа практичне примене 

Анализа практичне примене обухвата анализу параметара који су дефинисани у 2. поглављу 

овог рада. Резултати прикупљени су над скупом података са и без енергетске детекције, 

односно у оба сценарија у објашњеној методи, чувани су у табеларном формату и 

коришћени за даљу анализу инференције. Резултати инференције приказани у Табели 4 за 

први односно Табели 5 за други сценарио представљају средње вредности параметара 

добијених након десет поновљених итерација процеса тестирања. На овај начин постигнута 

је већа поузданост резултата и смањен утицај случајних одступања у појединачним 

мерењима. 
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Табела 4. Резултати практичне примене у првом сценарију. 

 

 

 

Табела 5. Резултати практичне примене у другом сценарију. 

 Тест 1 Тест 2 Тест 3 

Број учитаних спектрограма 5000 5000 5000 x5 

Број одбачених 

спектрограма 
1968 1968 

1968 по 

процесу 

Број детекција  5916 5916 5916 

Величина пакета података 1 1 1 

Просечна поузданост 

детекције 
0.5 0.5 0.5 

Време учитавања модела и 

слања на GPU [s] 
0.288 0.195 0.222 

Просечно време по слици 

ЕSD + инференција [s] 
0.067 0.065 0.105 

Укупно време [s] 203 197 319 

 

 Тест 1 Тест 2 Тест 3 

Број учитаних спектрограма 5000 5000 5000 x5 

Укупан број детекција 5924 5924 5924 x5 

Величина пакета података 1 1 1 

Просечна поузданост 

детекције 
0.5 0.5 0.5 

Време учитавања модела и 

слања на GPU [s] 
0.298 0.201 0.235  

Просечно време по слици [s] 0.045 0.043 0.110 

Укупно време инференције 

[s] 
225 215 550  
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Резултати приказани у Табели 4 показују да примењени YOLO модел постиже високу 

ефикасност у реалном времену. Тестирање је спроведено над скупом од 5000 слика 

спектрограма, при чему је обрада вршена појединачно како би се проценила стварна брзина 

система у условима који одговарају оперативном раду. Просечно време инференције по 

слици  у првом тесту износи 0.045 секунди, што одговара оствареном протоку од приближно 

20 кадрова у секунди и указује на то да модел може да функционише у скоро реалном 

времену. У првом случају хардвер одређује динамику учитавања па укупно време 

инференције одговара и укупном времену обраде (слике се без задршке учитавају и 

обрађују). Ови резултати показују да у реалној примени уређај може неометано да 

функционише и обрађује слике које пристижу брзином од 45 ms. У овом случају су све 

слике учитане у привремену меморију уређаја што је изазвало веће оптерећење уређаја и 

GPU али одређеном адаптацијом и у реалној примени где слика долази на 45 ms обради се 

и ослободи из меморије неће бити додатних трошкова што је од великог значаја за систем 

правовремене детекције и класификације дронова. Просечно време учитавања модела на 

GPU је унифицирано за све тестове и потврђује да модел након иницијализације може да се 

активира и извршава више процеса уз минимално кашњење, што је битна предност за 

имплементацију у системима који раде у континуалном режиму. Имајући у виду да је време 

потребно за генерисање једног спектрограма у пријемном делу система приближно 300 ms, 

може се закључити да је време обраде једне слике вишеструко краће. Ово омогућава да 

систем за детекцију и класификацију дронова ради у реалном времену и без кашњења у 

обради података. У другом тесту је реализована симулација реалног процеса пристизања 

спектрограма и на тај начин је растерећена привремена меморија уређаја. Резултати 

инференције су незнатно бољи у погледу временске обраде али у погледу хардверског 

оптерећења имају велики утицај. О томе ће бити речи у делу анализе хардвера. У трећем 

тесту, приликом реализације више истовремених процеса може се уочити да просечно 

време инференције по спектрограму износи 110 ms, знатно више у односу на претходне 

тестове. Такав одзив система је очекиван, међутим, са динамиком пристизања спектрогрма 

од 300 ms, чак и у 5 истовремених процеса, хардвер у потпуности задовољава захтеве 

обраде.  

У другом сценарију уведена је примена енергетске детекције док су тестови остали исти као 

у првом сценарију (Табела 5). Време потребно за реализацију инференције остаје исто, 
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међутим време које је потребно да се спектрограм обради у процесу ESD а потом и током 

инференције сада износи 67 ms у односу на пређашњих 45 ms. Оквирно се закључује да 

енергетска детекција по слици износи 20 ms. У конкретном случају, одбачено је 1968 

спектрограма који нису морали да прођу кроз модел и време које је потребно за њихову 

обраду кроз примену ESD је знатно мање него време које је потребно за обраду кроз процес 

инференције. Дакле, у оваквој примени, када би брзина пристизања слика била у рангу 

граничних времена обраде, укупно време читавог процеса са применом ESD било би 

значајно краће и доста ефикасније у погледу трошкова.  

Међутим, уколико је скуп података такав да је проценат спектрограма који у себи носе РФ 

комуникацију наспрам оних који се сврставају у амбијент знатно већи, енергетска детекција 

не би била ефикаснија јер не би било одбацивања спектрограма и сваки би пролазио оба 

процеса. То свакако важи када су у питању измерене граничне брзине пристизања (у овом 

случају око 70 ms). Ако би пријемни систем генерисао спектрограме у времену већем од    

70 ms, примена енергетске детекције би допринела ефикаснијем коришћењу ресурса. Из тог 

разлога, у случају другог и трећег теста, времена које се остварују применом енергетске 

детекције су сасвим задовољавајућа за примену у реалном систему где се спектрограми 

генеришу на сваких 300 ms. Разлика коју уводи примена ESD  је значајна у појединим 

сценаријима када нема довољно активности у спектру јер се на тај начин смањује даља 

обрада и генерисање непотребних „лажних“ метаподатака за  накнадну, детаљнију анализу.  
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4.3 Анализа перформанси хардвера 

Током тестирања модела дубоког учења на платформи NVIDIA Jetson Orin извршена су 

мерења кључних параметара система током фазе инференције. Циљ анализе је био да се 

процени колико је хардвер искоришћен током реалног рада модела, као и да се 

идентификује потенцијални простор за оптимизацију у погледу потрошње енергије, 

оптерећења процесорских јединица и радних фреквенција. Посебна пажња посвећена је 

следећим показатељима: 

1. Потрошња енергије како би се утврдила просечна, минимална и максимална вредност 

током инференције, као и да ли систем остаје у оквиру конфигурисаног опсега или ради 

на граници. 

2. Оптерећење GPU и CPU јединица како би се проценио степен паралелног ангажовања 

графичког и централног процесора и њихов однос у извршавању задатака. Анализом 

употребе GPU-а може се утврдити да ли се графички процесор користи приближно 

максималном капацитету што указује на добро GPU делегирање. Истовремено, 

параметар упоребе CPU-а омогућава процену у којој мери CPU подржава GPU током 

припреме података, предобраде и постобраде. Анализом фреквенције рада GPU и CPU 

може се проверити да ли систем ради у убрзаном режиму или у енергетски ограниченом 

режиму, што је посебно важно за овакве примене и термалну стабилност. 

3. Температура GPU и CPU компоненти прати се током целог трајања инференције као би 

се омогућила процена термалне ефикасности система и потенцијалних ограничења у 

дуготрајном раду. 

Сви параметри су бележени у реалном времену током извршавања YOLO модела на узорку 

спектрограма и према сценаријима који су дати у претходним поглављима, а резултати су 

приказани на графицима са просечним вредностима, уз коментаре о понашању система и 

ефикасности рада. Графици измерених вредности за оптерећење GPU и CPU јединице, 

потрошњу и температуру приказани су на Слици 22 за први, односно Слици 23 за други 

сценарио. 
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 а) б) 

 
в) 

Слика 22. Графички приказ параметара хардверског оптерећења платформе током првог 
сценарија: а) тест 1, б) тест 2, в) тест 3. 

На основу прикупљених података може се уочити да систем  у сваком тесту ради стабилно 

и енергетски ефикасно. У првом тесту првог сценарија (Слика 22 а)) GPU показује изражене 

варијације оптерећења са честим краткотрајним вредностима до 100%, што указује на 

периодично активирање током обраде података што је очекивано обзиром да је свих 5000 

слика учитано у привремену меморију и обрађивано динамиком коју диктира хардвер. CPU 
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оптерећење остаје умерено што упућује да није уско повезано са критичним GPU 

процесима, већ углавном обавља пратеће операције. Потрошња енергије (VDD_IN) креће 

се у стабилном интервалу од приближно 9–9.6 W, без већих осцилација, што указује на 

добру регулацију напајања и оптималну расподелу ресурса између CPU-а и GPU-а. 

Температура GPU-а остаје у уском опсегу између 52.6°C и 53.4°C, што потврђује да систем 

задржава термалну стабилност и да нема појаве прегревања чак ни током пуног оптерећења 

(прихватљиве вредности за оптималан рад су до 70 °C). Измерени параметри показују да је 

Jetson Orin у овом сценарију радио у потпуно стабилном термалном и енергетском режиму, 

без индикација нестабилности или деградације перформанси током целокупног процеса 

инференције. 

У другом тесту првог сценарија (Слика 22 б)) систем ради са знатно смањеним оптерећењем 

GPU-а што узрочно доводи до мање потрошње (5.5–7.5 W) и ниже температуре (46–50°C). 

Ту се види „ослобађање“ ресурса у погледу пристизања и обраде слике на сваких 300 ms. У 

претходном делу, приликом анализе перформанси обраде се та предност није видела у некој 

већој мери док је овде показатељ да се адаптацијом постојећем систему не морају 

беспотребно трошити ресурси. Са оваквом потрошњом и стабилношћу систем се може 

интегрисати на различитим платформама са ограниченим ресурсима у погледу напајања, 

система за хлађење и слично. 

У трећем тесту првог сценарија (Слика 22 в)), систем показује одличан степен енергетске 

ефикасности и стабилности. GPU ради у умереном опсегу оптерећења, са честим али 

краткотрајним повишеним вредностима које не прелазе 65%, што указује на добро 

уравнотежену расподелу задатака и оптимално искоришћење графичких ресурса. CPU 

оптерећење остаје стабилно, у просеку око 8–10%, без изражених скокова који би указивали 

на загушење процесора. Потрошња енергије је константна, у опсегу од 5.8 до 6.2 W, што је 

најнижи ниво забележен током тестова, док се температура GPU-а задржава између 46°C и 

49°C, такође значајно испод граничне. Ови резултати потврђују да систем у овом режиму 

ради у оптималном термалном и енергетском стању, при чему је обезбеђен стабилан рад и 

максимална поузданост током инференције. У сва три теста систем је показао стабилан рад 

без знакова термалне или енергетске нестабилности. Са повећањем броја процеса и краћим 

интервалима обраде, примећено је постепено смањење потрошње енергије и температуре 
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GPU-а, што указује на ефикаснију расподелу оптерећења између CPU и GPU јединица. 

Најбоље перформансе у погледу стабилности и енергетске ефикасности остварене су у 

сценарију са пет процеса и интервалом од 300 ms што је најприближније реалној примени 

и оптимално за интеграцију у постојећи антидрон систем. 

 

 а) б) 

 

в) 

Слика 23. Графички приказ параметара хардверског оптерећења платформе током другог 

сценарија: а) тест 1, б) тест 2, в) тест 3. 
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Резултати који су прикупљени у другом сценарију показују, уз минималне варијације у 

оптерећењу GPU-а, CPU-а и потрошњи енергије, сличне закључке као у првом сценарију. 

Овакви резултати указују да примена енергетске детекције не уводи додатне захтевне 

обраде нити изазива промене у динамици рада система. Хардвер је задржао стабилне 

температурне услове, константну потрошњу и уједначену расподелу ресурса, што потврђује 

да се енергетска детекција може спроводити паралелно са инференцијом без негативног 

утицаја на перформансе. Ова функционалност не носи додатне хардверске трошкове, нити 

повећава термално оптерећење, па се њена примена може сматрати енергетски и оперативно 

оправданом у оквиру услова дефинисаних у претходној анализи. 
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5. Закључак 

У оквиру овог рада приказана је анализа једног модела неуронске мреже са примењеним 

YOLOv8 алгоритмом развијеног за потребе детекције и класификације дронова. Поред 

анализе модела, детаљно је описан и пријемни процес са креирањем спектрограма који 

служе као улазни параметри за модел, чиме је успостављена основа за реализацију антидрон 

система. Спектрограми представљају кључни елемент у процесу препознавања, јер 

омогућавају визуелизацију РФ комуникације дронова што је погодно за даљу обраду и 

анализу применом дубоког учења. 

Имплементација модела извршена је на хардверској платформи Jetson Orin са циљем 

процене могућности примене EDGE технологија у системима за правовремену детекцију 

дронова. На основу спроведених анализа и добијених резултата може се закључити да 

модел остварује веома добре перформансе у реалном времену, како у појединачној тако и у 

паралелној обради више спектрограма. Треба нагласити да време које је коришћено као 

параметар за потврду успешне примене представља време генерисања спектрограма 

постојећег радио-пријемног система. Иако је систем довољно добар и са тим крајњим 

вредностима, треба узети у обзир време прослеђивања на платформу и време обраде у 

примени eнергетске детекције када би били примењени другачији услови односно када би 

се пристизање спектрограма реализовало убрзаном динамиком. У овом тренутку није било 

могуће повезати два система и радити обраду у реалном времену већ је рађена анализа са 

спектрограмима из базе података па је за референтну вредност само симулирано време 

потребно за креирање једног спектрограма. Вредности метрика које су анализиране 

потврђују висок ниво поузданости и стабилности модела, док резултати инференције 

указују да је време обраде по слици вишеструко мање од времена потребног за генерисање 

спектрограма. Све спроведене анализе потврђују позитивне резултате и показују да је 

развијени систем применљив у пракси. 

Потенцијална ограничења анализе овог модела се односе пре свега на недовољан број 

узорака дронова у скупу података, што може утицати на поузданост у сложенијим 

сценаријима и може изазвати могућност јављања лажних позитивних детекција. Дакле, 

даљи развој би требало усмерити ка проширењу скупа података и анализи примене 

енергетске детекције у случају када се примењује YOLOv8 алгоритам. Поред тога треба 
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даље истражити могућности других YOLO алгоритама и адаптирати модел тако да на 

излазу може да дефинише и друге параметре од интереса. У циљу унапређења тачности и 

једноставности примене, потребно је тежити развоју и обучавању јединственог модела који 

би објединио све излазне параметре, класификацију, број детектованих дронова и пратеће 

параметре од значаја који се могу анализирати из слике спектрограма. На тај начин би се 

постигао интегрисан и ефикасан систем за анализу и управљање у реалним условима рада. 

Такође, потребно је спровести детаљнију анализу перформанси Jetson Orin платформе, јер 

је тестирање извршено са подразумеваним вредностима параметара за оптималну обраду. 

Уз већу потрошњу енергије могу се постићи боље перформансе, али је неопходно параметре 

рада прилагодити конкретним захтевима примене, у зависности од приоритета између 

ефикасности и енергетске потрошње. Додатни корак у правцу оптимизације система 

представља примена TensorRT оквира за извођење инференције уместо стандардног 

Ultralytics/PyTorch окружења. TensorRT, као високооптимизована библиотека компаније 

NVIDIA, омогућава претварање постојећег модела у формат прилагођен конкретној 

архитектури Jetson Orin платформе, чиме се значајно унапређује брзина извршавања и 

ефикасност коришћења GPU ресурса. На овај начин би се елиминисао део трошкова 

повезаних са интерпретацијом PyTorch модула током инференције, што ће резултовати 

краћим временом обраде по слици и бољим искоришћењем меморије. Поред тога, 

конверзијом модела у TensorRT формат могуће је извршити оптимизацију на различитим 

нивоима прецизности, као што су FP32, FP16 и INT8, при чему се одређена тачност жртвује 

у корист брзине и мање потрошње ресурса. Примена ових режима на Jetson Orin платформи 

омогућила би повећање броја обрада у секунди уз минималан губитак у тачности 

класификације, док би истовремено смањила оптерећење графичког процесора и потрошњу 

енергије. Овакав приступ је посебно важан у контексту примене EDGE технологије, где се 

тежи постизању максималних перформанси уз ограничене хардверске ресурсе. 

У будућем раду потребно је извршити детаљну анализу конверзије и оптимизације YOLOv8 

модела у TensorRT, уз поређење резултата добијених у FP32, FP16 и INT8 режимима. 

Оваква анализа омогућиће квантификацију уштеде у времену обраде, смањење потрошње 

ресурса и утицај на тачност детекције, што би представљало важан корак ка финалној 

оптимизацији комплетног антидрон система за рад у реалном времену. 
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Овај рад представља значајан корак у правцу развоја интелигентних антидрон система 

заснованих на дубоком учењу. Кроз интеграцију YOLO модела за класификацију и 

детекцију дронова са реалним РФ подацима приказана је могућност примене дубоких 

неуронских мрежа у анализи спектрограма. Посебан допринос рада огледа се у детаљној 

анализи понашања хардверске платформе Jetson Orin током инференције, чиме је показано 

да је могуће постићи стабилне и енергетски ефикасне перформансе у реалном времену. 

Резултати овог истраживања представљају основу за даљи развој адаптивних и 

оптимизованих EDGE система намењених применама у специфичним и енергетски 

ограниченим платформама, као што су мобилни или теренски уређаји, где је управљање 

потрошњом и ефикасност извршавања од пресудног значаја. 
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